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LETTER TO THE EDITOR

On the higher-order generalizations of Poisson structures
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1 Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3
9EW, UK
1 Departamento deiBica Térica, Universidad de Valladolid, E-47011, Valladolid, Spain

Received 30 May 1997

Abstract. The characterization of the Nambu—Poissefiensors as a subfamily of the
generalized Poisson ones recently introduced (and here extended to the odd-order case) is
discussed. The homology and cohomology complexes of both structures are compared, and
some physical considerations are made.

1. Nambu—Poisson and generalized Poisson structures

a) Nambu—Poisson structures

The generalization of the Hamiltonian mechanics proposed by Nambu [1] more than
20 years ago has recently attracted renewed attention, particularly since Takhtajan [2]
extended it further by introducing Poisson brackets (PB) involving an arbitrary number
n of functions, the case = 3 being Nambu’s original proposal. Hidambu—Poisson
(N—P) tensors provide an interesting generalization of the mathematical noti®aisson
structure (PS) on a manifold [3]. A N-P structure is defined by amlinear mapping
(..} F(M) x =" xF(M) — F(M) which is: (a) completely antisymmetric, (b)
satisfies the Leibniz rule, i.d.f1, ..., fu_1, gh} = g{f1, ..., fact, A} +{f1, ..., fu_1, g}h

and (c) verifies the (2-1)-point, @+1)-termsfundamental identityFI) [2]

{flv cr fnfla {glﬂ cr gl‘l}} = {{flv ce fnflv gl}v 827 R gﬂ}
+{gls {fl’ ceey fn—lv 82}, s gﬂ} + -+ {glv -5 8n—1, {flv RN} fn—l? gn}}
(1)

This relation may be understood as expressing that the time evolutior(nfor 1)
HamiltoniansH;,i =1, ..., (n — 1) given by

f=1{H1,...,H,_1, f} (2

is a derivation of the:-N—P bracket. The case= 3 corresponds to Nambu’s mechanics,
although its associated five-point identity (equation (1)fet 3), introduced by Sahoo and
Valsakumar [4], was not explicitly mentioned in his work.
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The N-P bracket may be introduced through an antisymmetric contravariant tensor
n € AN"(M) or multivector locally expressed by

n= i,n,-l.._,»”afl Ao A0 =09/0x! (3)
n:
by defining
{fi,..., ful =n@fr,....df). (4)

Since (3) and (4) automatically guarantee properties (a) and (b) above, all that is required
from n is to satisfy the FI. It is shown in [2] that this is achieved if the multivecjor
satisfies two conditions. The first is the ‘differential condition’

Mirein-1p9" Mjr.cjy = O Mg j ) Mpjzeccin = O M 1) Mjnpiaeccin =+
_(8,0}71'1.441',,,1]',1)njl...j,,,lp = O (5)
which we shall write here in compact form as

1 hd
Miyoin 100" Mjn.ojy — ] €1 0 iy iy ) Nplo..t, = 0. (6)

The second condition, which follows from requiring that the terms with second derivatives
of f1,..., f,—1 in the FI should vanish, is the‘algebraic condition’

T+ P(X)=0 (7)
where X is the tensor of orderi2given by the sum ofn + 1) terms

Eiseinjtoin = MiveesinMjreoojn. = Mitewsin-1ja Minjoorju- = Mitevi1jo Wi oo
~MNiin 1 jsMjsjoinjain = " = Miteintjn Mt oo n1in (8)

and P interchanges the indiceg and j; in {. Equation (8) may we rewritten as

1
D — 611~~~l»x+1 (9)

i1.dn 1o Jn E in j1eejn Miteeidn_als M. yga -

Clearly, the algebraic condition is fulfilled i£& = 0. This implies in turn that the
skewsymmetric tenson is decomposable (i.e. it can be written as an exterior product
of vector fields onM) and in fact, as conjectured in [5], it may be shown [6-8] that all
N-P tensorsi > 2) are decomposable (far= 2, equation (7) is trivial).

b) Generalized Poisson structures

Recently, another generalization [9] of the ordinary PB has been proposed under the name of
generalized P$GPS) by extending the geometrical approach to standard PS [3]. In these, a
bivectorA € A%(M) on a manifoldM defines a P$f it has a vanishing Schouten—Nijenhuis
bracket (SNB) with itself, A, A] = 0. This condition, when generalized to multivectors of
even orderA e A%’ (M) provides the definition of the GPS (see below for the odd-order
case) because for

= 7(217)' a)jlmjzp S LRV NN I (10)

1 From the conditionz = 0 easily follows that in az-dimensional space the (obviously decomposakignsor
Niy..in = €ip...i, defining theR” volume element and the tensay_; , (x) = €;,._;,x™ are Nambu tensors [5], i.e.
satisfy the conditions (6) and (7).
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the requirement 4, A] = 0 means that the coordinates of theneralized PoissofGP)
multivector A satisfy the condition [9]

Ji--Jap-1 k _
€iriny s Pitjzeiop-1k0 Ojyyijay =0 (11)

4p—-1
2p—1
Ji--Jap-1

€1 ap 1 Ui fior s Jizgao Ulyr -+ Sigp a1l =0 (12)
where thegeneralized Poisson brack@BPB) is also defined by (4) but for the in (10).
Notice that, as we shall see below, no further conditions are needed to remove the second
derivatives from equation (12), which is already free of them. As a result phee2tor is
constrained by the differential condition (1aly.

The even GPS have a clear differential geometrical origin due to their definition in terms
of the SNB by the condition4, A] = 0. Moreover, in the linear case one can find (an
infinite number of) examples of even GPS defined by the Lie algebra cohomology cocycles
[9]. Indeed, for simple Lie algebras of rarkthere are antisymmetric tensors provided
by the! (2p; — 1)-cocycles { = 1, ...,1) [10] with coordinates; ¢, which define
GP tensors of order (2 — 2),

Wiy ...jop—2 = Qj 7 Xo (13)

1. J2p—2

which is equivalent to the @#— 1)-point, ( )-termsgeneralized Jacobi identit§GJl)

1o J2p;—2

which satisfy (11). These linear GPB may be seen to be the analogues of the even
multibrackets defining higher order Lie algebras [11] and, from this point of view, there

is a one-to-one correspondence between these linear GPB and the higher-order brackets of
associative non-commuting operators. The time evolution, defined as in (2) bupferl(R
Hamiltonians, is not a derivation of the GPB as it is in the N-P structure. In contrast with
the N-P tensors, however, the GB-&ultivectors (10) are not decomposable in general
because they do not need to obey the algebraic condition (7). It is easy to check, on the
other hand, that any decomposable multivector of orger2> 1, defines a GPS. Indeed,

in this caseA=X1 A --- A X, and using standard properties of the SNB [9, equation (4.1)

of second reference] it follows that

[A,A] =[X1/\-‘-/\X2P,X1/\'--/\X2p]
= Z(—l)’“Xl/\~--)fs--~/\X2,,,/\[XS,X,] AXiA-- X A X =0
(14)
due to the appearance of repeated vector fields.

Much in the same way that on a Poisson manifold it is possible to define a Poisson
cohomology [3], a GPB also definegianeralized Poisson cohomolofg} through the SNB.
Explicitly, if the 2p-vector A defines a GPS, the mappig : AY(M) — A?PTa-1(M)
defined by

Spia [A,a] (15)
is nilpotent since A, [A, «]] = 0 and defines &p — 1)-degree cohomology operator.

Equation (14) and the decomposability of all N—P tensors show that there is an overlap
among the above generalizations of the standard PS. This may be shown directly by noticing

first that the GJI (12) is a full antisymmetrization of (i) This observation leads to the
following simple lemma.

Lemma 1.A N-P bracket (hence, satisfying the FI (1)) verifies
Lot Ui Sz eeos S oo S} = 0. (16)

1 This fact was also known to L Takhtajan (private communication).
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Proof. Multiplying both sides of (1) by and using its antisymmetry, (1) is rewritten as
Lot Ui Sz eeos Siva oo fiaa))

=n(=D" e 5 i fiae s S Ui fia) (17)
hence, forn > 2, we obtain (16), QED (for = 2 the N-P and the GPS reduce to the
standard PS).

Equation (16), fom = 2p, is the same as (12) and we conclude taary N—P bracket
of even order also defines a generalized Poisson brgdiat |

Due to the geometrical origin of the GJI condition, the GPS were originally introduced
[9] for even order only: the SNB of @ (¢)-multivector A (B) satisfies A, B] =
(=1”4[B, A] and thus A, A] = 0 if A is of odd order (we are not including here the
case of the ‘super’ SNB [13]). Nevertheless, we may extend the GPS by adopting the GJI
(16) for arbitrary (even or odd) as a first step in their definition. In the odd case, the GJI
is unrelated to the conditiom\], A] = 0 since it is trivially satisfied. But if we now define
an odd-order GPB satisfying (16) far odd we find settingf; = x;,i =1,...,2n — 1
that the coordinates of the associatedector A must satisfy the differential condition (cf
(11), (6))

JieJa-1, k.. _
€1 o1 wjljz---]nfﬂ(a Wjy ... jon1 = 0. (18)

Forn odd a second step now becomes necessary to cancel all second derivatives that appear
in the GJI (16). If we want to keep the GJI for odd-order brackets we have to impose
an additional ‘algebraic condition’ to the vector defining the structure. Explicitly, this
condition (for arbitraryn) is (cf (7))

i1.in—1 1o jn-1 _
ST kon—2 (a)ilmin—lpwjl---jn—la + wil---in—lawjl~~~jn—1p) =0. (19)

For evenn this equation is automatically satisfied; this explains why there is no ‘algebraic
condition’ for even multivectors defining a GPS. In contrast, equation (19) is an additional
condition onw for n odd.

As a consequence of lemma 1, conditions (18) and (19) must be extracted from
conditions (6) and (7). In fact, it is easily deduced that (18) follows (only) from (6)
and that (19) comes (only) from (7).

Summarizing, extending the definition of GPS to odd brackets, the following general
lemma follows.

Lemma 2.The N-P tensors of even or odd order are a subclass of the multivectors defining
the GPS, namely those for which the time evolution is a derivation of the bracket (or, in
other words, the time-evolution operator preserves the Poissmacket structure).

We conclude this section by mentioning that one might think of using Lie algebra
cocycles;, ;,,, as the coordinates of &p + 1)-vector A leading to the odd bracket
{firs ooy fir, Jo} = AWfiy, ..., df;,,.dfs) (see [14] for the trilinear case; cf [15]).
However, although the differential condition for both the N—P (equation (6)) and odd GPS
(equation (18)) are trivially satisfied for a constant multivector, this is not in general the case
for the algebraic N-P (equation (7)) and odd GPS (equation (19)) conditions. In contrast,
any cocycle defines an even linear GPS.

2. Homology and cohomology

We now compare the homological complexes underlying both structures (d-&hd GPS,
(b)). First, let us recall the standard homology complex for a Lie alggbrBher-chains are
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n-vectors of A" (G) (for instance, left-invariant [LIz-antisymmetric contravariant tensors
on the associated grou@, i.e. LI elements ofA”(T(G))), and the homology operator
9C, — C,_1 is defined by

XL A=A Xy) = Z D, gl AX AR R A X, (20)
1<l<k<n

wherex € G and [, ] is the Lie bracket inG; a[A"(G)] = 0 for n < 1. In particular,
d(x1 A x2) = [x1,x2] and, in this casep may be relabelled = 9,, 9, : A"(G) —
A= (@),

al) Nambu-Lie homology

Let us consider now &lambu—Lie(N-L) algebra V' of orders in the sense of [16] This

means that there is an antisymmetribracket [, .5., ] : V x Sixy sy, [x1,...,x] €V
which satisfies the Fl

ST T TN Y | IE | 2 TR I U1 I R N
+[y1’ [‘x17 "'9x571’ yz]’ "‘7y5] +'.. +[yl7 ""y5717 [x17"'7x571’ yn]]

(21)
i.e. such that the mapx{,..., x;_1,-] : V — V is a multiderivation of the N-L bracket.
The N-L homology has been introduced by Takhtajan [16]. Cgtbe the n-chains
C,=V® e ®V, Co = V. Itis convenient to denote the arguments in the chéips
by
(X1, Xoy oo, Xy X) = (X1, oo XL X2, oo X2 oo X e, X, X) (22)
where X; = (x,-ll, .. .,x,g_l) e V71, etc andx € V. Now we consider the dot products
C1 x Cy— CyandC; x V — V defined by
n—1
X-Yi=) n® Q... % 1,5 ® Y1 (23)
i=1
X -x:=[xg,..., %1, X]. (24)

Due to the FI (equation (21)) these products satisfy
XY -Z2)-X-Y)-Z=Y-(X-2) X Y- -2)—-X-Y)-z=Y -(X-2). (25)

If these products were antisymmetric (25) would be the Jacobi identity and thus, we would
have defined a Lie algebra. Although they are not, we can still define a Lie-type homology
because the operat@; defined onCy by 9, : C; — Co =V, 05 : (x1,...,%5)
[x1,...,x] and onC, by

6 (Xe o Xpox) = Y DX K X X X )

I<i<j<n
+ ) DX X X, X ) (26)
1<i<n

verifiest 32 = 0. On two-chainsp? = 0 gives the ‘fundamental identity’ which replaces
the Jacobi identity for N-L algebras. For instance, foe 4 we haveds(xi, x2, x3, X4) =

1 The case of the more general Nambu-Leibn&dgebra (which does not assume the antisymmetry of the bracket
[17]) is discussed in [18]. We thank L Takhtajan for sending this paper to us.

i This is the case for the Leibniz algebras [17] where we have a Lie-like homology in which the ‘bracket’ is not
antisymmetric. The Jacobi-like conditions (25) ensure thas nilpotent.
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[x1, X2, x3, x4] @and 32 on C, gives (cf (21))

32(x1, X2, X3, X4, X5, Xg, X7) = [[X1, X2, X3, X4], X5, X6, X7) + [x4, [X1, X2, X3, X5], X6, X7]
+[x4, x5, [x1, x2, X3, x6], x7] + [*x4, X5, X6, [X1, X2, X3, X7]]

—[x1, x2, x3, [x4, x5, X6, X7]]. (27)

b1l) GP-Lie homology

Let us now look at the case of even GPS. To this end, consitégteer-order Lie algebra
in the sense of [11] (see also [19, 20]), i.e. {¢tbe a vector space endowed with an
antisymmetrics-linear operations even) f,.5.,-]: ¢ ® 1. ® G — G, which verifies the
generalized Jacobi identity

1 1
sl (s — 1) Y YD Mo e o) Ko s Xo-n] = O. (28)

(7652,,1

In particular, ifs is even thes-bracket of associative operators defined by

[)Cil, )Cl‘z, ey x,}] = Z(—l)”(a)xiamxiﬂz) e xiam (29)

o €eS;

satisfies (28) (fos odd, the I.h.s. in (28) is proportional tay| ..., x,_1] rather than zero
[11]).

The n-chains are now elements of'(G) and the homology operatay; is the linear
mappingd; : A"(G) — A""6~D(G) defined by

1 o
D(XLA - AXy) = —————— €0 (Xiy Ao AX) AXi g Avr AXG,. (30)
sl(n — s)!

Denoting,d; (xi,, . .., x;,) = [x;;, ..., x;] € A(G) equation (30) may be rewritten
(X1 At AXy) = Z (=)t Hits/2
1<ip < <ig<n
X[xil""’xix]/\xl/\"'/\)eil/\"‘/\fix A A Xy (31)

and the GJI may be also expressed 38gA*~1(G)] = 0. For instance, fors = 4,
af(xil A Xiy N Xiyg A Xi, A Xig A Xi;) gives the GJI (equation (28)) which is the sum of
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7!/413! = 35 terms

(X2, Xips Xigs Xig)s Xig, Xigs Xig] — [[Xiy, Xiys Xigs Xig]s Xigs Xig, Xir]
Hllxiys Xiys Xigs Xigl,s Xigs Xiss Xi] — [[Xiys Xips Xigs Xiz], Xig, Xig s Xig]
H[xiys Xigs Xigs Xig]s Xigs Xig, Xig] — [[Xiys Xis Xig» Xig)s Xigs Xis» Xi)
Hllxiys Xiys Xigs Xig], Xigs Xigs Xig] 4 [[Xiys Xips Xigs Xig)s Xig, Xy Xi7]
—[[Xiys Xips Xigs Xi]s Xigs Xigs Xig] + [[Xiy> Xins Xigs Xig]s Xigs Xig» Xi]
—[xiys Xigs Xigs Xis], Xips Xigy Xig] 4 [[Xiys Xiss Xigs Xig], Xiys Xigs Xy
—[[Xil, Xigs Xig xi7], Xiyy Xigy xis] - [[Xil, Xigs Xigs Xie], Xiys Xigs Xi7]
Hxiys Xigs Xig, Xig]s Xigs Xigs Xig) — [[%iy, Xigs Xigs Xi s Xigs Xy Xis]
Hlxiy, Xigs Xigs Xigls Xigs Xigs Xi) = [[%ig, Xigs Xigs Xi ], Xiys Xig Xis)
Hxiy s Xigs Xigy Xigls Xigs Xigs Xig) — [[%iy, Xigs Xigy Xi s Xigs Xis, Xiy]
Hllxips Xigs Xigs Xis], Xiys Xigs Xi] — [[Xips Xigs Xigs Xig)s Xiy, Xis, Xi7]
[ xips Xigs Xig Xigls Xigs Xis, Xig] + [Xins Xigs Xis, Xigls Xiy» Xig» Xiy]
—[[xiys Xigs Xigs Xiy], Xigs Xig, Xig] 4 [[Xiys Xigs Xigs Xig], Xiys Xigs Xi]
—[[Xiys Xigs Xigs Xigls Xiys Xigs Xig] + [[Xins Xigs Xigs Xig ], Xiys Xig» Xig)
—[[xiys Xis Xigs Xir], Xiys Xig, Xis] + [[Xiys Xis» Xigs Xig], Xiys Xigy X,
+[[xi3, Xigs Xigs Xie], Xiys Xipy Xi7] - [[Xi3, Xigs Xigs Xi7], Xiys Xipy Xia]
Hxis» Xigs Xigy Xigls Xiys Xis Xig) — [[%ia, Xis Xig» Xir ], Xiys Xiy» Xiy]

+[[~xi47 xi57 -xis’ -xi7]a xilv xizv xig] = 0

(32)

For the even linear GPS constructed from odd Lie algebra cocycles, the above GJI truly
reflect the underlying Lie-algebra structure; this justifies the lG&rame given to this case.
These GJI are particular examples of those appearing in the strongly homotopy algebras
[21], which contain ‘controlled’ violations of the above GJI which may be introduced in
our scheme by using a suitable modification of tmenplete BRST operat@ssociated to

G [11, theorem 5.2]. These algebraic structures have been found relevant in closed-string
field theory (see [21, 11] and references therein).

a2) Nambu-Lie cohomology

Let us now consider the dual cohomology operations. For the N-L case we define
cochainsC" as mappings: : V ® "¢6-D+1 @)Y — A where A is an Abelian algebra (real
field, for instance). Then, the cohomology operator C* — C"*! is defined as the dual

of the homology operatad,, (C", 8,C,+1) = (6;C", C,41) Where(, ) denotes the natural
pairing between chains and cochains. Using this duality it follows immediately that the
operators, is defined (cf [7]) by its action on a cochaine C? by

(8s@)(X1, ..., Xpp1, X) = Z (=D (Xe, .., Xiy o Xi - Xy X i1, X)
1<i<j<p+l
+ > DXy Xi o Xy X x) (33)
1<i<p+1

whereas in the homology cage= (x, ..., x,_1) € V*"tandx € V. The proof thas? = 0
is analogous to that for the Lie algebra cohomology coboundary operator if one thinks of
X; - X; in (33) as a commutator, in which case equation (25) looks like a Jacobi identity.
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b2) GP-Lie cohomology

In the case of the linear GPS constructed on the dual of a Lie algebra we may introduce a
cohomology operator dual to the homology one given in equation (31). Actingamthains
ail-ui/x

G@) (X1, s Xppgo) =y (=L

1<iy <+ <ig<n+s—1

XO([Xigy o vy Xi ]y X2y ooy Kigs ey Xigy e vy Xnps—1) (34)
or equivalently, settingx,, ..., x;] = w;,..;,”x, for definiteness,
1 o
J1-e Jnts—
(8s@iy. iy, 1 = O s 1 (35)

sl(n — 1)1 v
The nilpotency ofs; follows from checking that [9]
s Jrewedskt ka2
(S!)z(n _ 1)! 11025402
(m=1 i jkks
(s)2(n — 1)1 rizn2
where the second term is zero sinces even and the cochain is antisymmetric in(p, o)
and the first one is also zero since it encompasses the GJI. Since this cohomology is based
on multi-algebra commutators, it applies ltoear GPS. For a general GPS, however, the
operator (35) is not defined, but the associatgdvctor A still defines a generalized
Poisson cohomology by (15).

2 _ P o
(650)is. iz 0 = Wjy..j, Oply.. kg, Aok kyin s

P o _
Wjr...j, Oky k,” Aophyss. kg = 0 (36)

3. Concluding (physical) remarks

The n-dimensional phase space of Nambu [1] for the N-P structure associated with the
volume element ifR"”, determined by am-vector x;, has a divergenceless velocity field
since, by (2),

JdH, o0H,_1 _
Wll =
This analogue of thé&iouville theorem(a main motivation in Nambu’s generalization of
Hamiltonian dynamics) also holds for the linear GPS given by the cocycles (13) since

8ij = 8j{H1, ey Hn,]_, x,} = 3j6i1...i,1,1j 0. (37)

Oy .o = X6 Ry.iny_, AN, 5, .7 IS @ constant antisymmetri@n — 1)-tensor. Thus,
3% = 8 (wiy.ipy oj0 H1 ... 322 Hppy_3)
= 37 (X0 Qiy.ipy 5 ) Hy ... 0" Hppg = Quy i, 5j) = 0. (38)

More generally, the conservation equation is clearly satisfied when the GRSi®defined
by wi, i, _, = '@y..i,,_,» and@ is an odd-order antisymmetric tengor

The Poisson theorem states that the PB of two integrals of motion is also an integral of
motion. In N—P mechanics the extension of the Poisson theorem is guaranteed by the FI
[2] that may be rewritten as

d 1 dgl
e, ..., g} = UL 39
dt{gl, , 8n} ;{gl o gn} (39)

T The previous case of the linear GPS is included here because one may diake,, , =

(2m7];2)!ﬁ—2iz+3€/;i%::}£,2,:’i_22xfx“QU/:L-_--./Zm—Z’ i.j.l=1,....n wheren is the dimension ofi/. Note that the second
denominator in the last expression cannot vanish because the order of the lieacket?) never exceeds the
dimensionn of the manifold.
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For the GPS, there is also an analogue of the Poisson theorem, although the condition
required for the constants of the motiogy (..., g«) (k > 2p) is more stringent. Not only

the ¢’s have to be constants of the motidg;,, Hi, ..., Hyp—1} =0, i = 1,..., k: the set

(iy» -+ 8inys» Hi, ..., Hzp1) OF @any (2p — 1) constants of the motion and thigp — 1)
Hamiltonians has to be in involution, i.e. any subset pfédements has to have zero GPB

[9, theorem 6.1]. This is because, in contrast with (1), wherefihe.. f,_1 may play the

role of Hamiltonians, the GJI in (12) includes GPB which contain Hamiltonians and more
than one constant of the motion.

We would like to conclude with a comment concerning quantization. As pointed out
by Nambu himself [1], the antisymmetry property is necessary to have Hamiltonians that
are constants of the motion in Nambu’s mechanics. This also applies to the higher-order
N-P structures [2], and remains true as well of the GPS in [9]. The structure of the FlI
makes the N-P bracket in [2] specially suitable for the differential equation describing the
time evolution of a dynamical quantity. Nevertheless, the standard quantization of Nambu
mechanics is an open problem likely without solution (see [15] in this respect). There is a
simple argument against an elementary quantization of N—P mechanics in which one tries
to keep the standard one-to-one correspondence among certain dynamical quantities, their
associated quantum operators and the infinitesimal generators of the invariance groups.
It is physically natural to assume that these quantum operatprsay, are associative.

But if so, it is not difficult to check [11] that any commutator ..., x,] defined by the
antisymmetrized sum of their products, as in (29), does not satisfy the Fl. Forlodakets,
moreover, we find [11, lemma 2.1] that it is not possible to realize the GJI in terms of odd
multibrackets, since then the r.h.s. of equation (28) is replacedfy.[., xo;,_1]. Thus,

for the odd case (which includes Nambu’s) a multibracket of associative operators defined
as in (29) leads to an identity which @autsidethe original N—P algebraic structure. For

s even, however, equation (28) holds. The resulting identity, however, is not the FI, but
the GJI associated with the GPS introduced in [9]. Thus, a natural correspondence between
multibrackets and higher-order PB exists only for the even multibrackets and the GPS. The
associativity of the quantum operators is not compatible with the derivation property of
the N-P bracket which leads to the FI (1). Such a compatibility exists for the even GPS;
however, in this case the time evolution fails to be a derivation of the GPB making it more
difficult to establish a dynamics already at the classical level.

The above discussion indicates that, in Nambu’s words, ‘quantum theory is pretty unique
although its classical analog may not be’. The quantization of higher-order Poisson brackets
requires renouncing to some of the standard steps towards quantum megchBatds may
well be (see also [24]) that classigalechanicdgs pretty unique too if the term ‘dynamical
system’ is restricted to its physical (rather than mathematical) meaning.
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1 A formal guantization of thez=3 Nambu mechanics case, where the Nambu bracket itself is replaced by an
h-deformed one, has been performed in [22]. For the ‘quantization deformatior! pratlucts, see the references
quoted in [22] and also [23].
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