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LETTER TO THE EDITOR

On the higher-order generalizations of Poisson structures
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† Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3
9EW, UK
‡ Departamento de Fı́sica Téorica, Universidad de Valladolid, E-47011, Valladolid, Spain

Received 30 May 1997

Abstract. The characterization of the Nambu–Poissonn-tensors as a subfamily of the
generalized Poisson ones recently introduced (and here extended to the odd-order case) is
discussed. The homology and cohomology complexes of both structures are compared, and
some physical considerations are made.

1. Nambu–Poisson and generalized Poisson structures

a) Nambu–Poisson structures

The generalization of the Hamiltonian mechanics proposed by Nambu [1] more than
20 years ago has recently attracted renewed attention, particularly since Takhtajan [2]
extended it further by introducing Poisson brackets (PB) involving an arbitrary number
n of functions, the casen = 3 being Nambu’s original proposal. HisNambu–Poisson
(N–P) tensors provide an interesting generalization of the mathematical notion ofPoisson
structure (PS) on a manifoldM [3]. A N–P structure is defined by ann-linear mapping

{·, . . . , ·} : F(M) × n· · · ×F(M) → F(M) which is: (a) completely antisymmetric, (b)
satisfies the Leibniz rule, i.e.{f1, . . . , fn−1, gh} = g{f1, . . . , fn−1, h} + {f1, . . . , fn−1, g}h
and (c) verifies the (2n–1)-point, (n+1)-termsfundamental identity(FI) [2]

{f1, . . . , fn−1, {g1, . . . , gn}} = {{f1, . . . , fn−1, g1}, g2, . . . , gn}
+{g1, {f1, . . . , fn−1, g2}, . . . , gn} + · · · + {g1, . . . , gn−1, {f1, . . . , fn−1, gn}}.

(1)

This relation may be understood as expressing that the time evolution for(n − 1)
HamiltoniansHi, i = 1, . . . , (n− 1) given by

ḟ = {H1, . . . , Hn−1, f } (2)

is a derivation of then-N–P bracket. The casen = 3 corresponds to Nambu’s mechanics,
although its associated five-point identity (equation (1) forn = 3), introduced by Sahoo and
Valsakumar [4], was not explicitly mentioned in his work.
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The N–P bracket may be introduced through an antisymmetric contravariant tensor
η ∈ ∧n(M) or multivector, locally expressed by

η = 1

n!
ηi1...in∂

i1 ∧ · · · ∧ ∂in ∂i = ∂/∂xi (3)

by defining

{f1, . . . , fn} = η(df1, . . . ,dfn). (4)

Since (3) and (4) automatically guarantee properties (a) and (b) above, all that is required
from η is to satisfy the FI. It is shown in [2] that this is achieved if the multivectorη

satisfies two conditions. The first is the ‘differential condition’

ηi1...in−1ρ∂
ρηj1...jn − (∂ρηi1...in−1j1)ηρj2...jn − (∂ρηi1...in−1j2)ηj1ρj3...jn − · · ·
−(∂ρηi1...in−1jn )ηj1...jn−1ρ = 0 (5)

which we shall write here in compact form as

ηi1...in−1ρ∂
ρηj1...jn −

1

(n− 1)!
ε
l1...ln
j1...jn

(∂ρηi1...in−1l1)ηρl2...ln = 0. (6)

The second condition, which follows from requiring that the terms with second derivatives
of f1, . . . , fn−1 in the FI should vanish, is the‘algebraic condition’

6 + P(6) = 0 (7)

where6 is the tensor of order 2n given by the sum of(n+ 1) terms

6i1...inj1...jn = ηi1...inηj1...jn − ηi1...in−1j1ηinj2...jn − ηi1...in−1j2ηj1inj3...jn

−ηi1...in−1j3ηj1j2inj4...jn − · · · − ηi1...in−1jnηj1j2...jn−1in (8)

andP interchanges the indicesi1 andj1 in 6†. Equation (8) may we rewritten as

6i1...inj1...jn =
1

n!
ε
l1...ln+1
inj1...jn

ηi1...in−1l1ηl2...ln+1. (9)

Clearly, the algebraic condition is fulfilled if6 = 0. This implies in turn that the
skewsymmetric tensorη is decomposable (i.e. it can be written as an exterior product
of vector fields onM) and in fact, as conjectured in [5], it may be shown [6–8] that all
N–P tensors (n > 2) are decomposable (forn = 2, equation (7) is trivial).

b) Generalized Poisson structures

Recently, another generalization [9] of the ordinary PB has been proposed under the name of
generalized PS(GPS) by extending the geometrical approach to standard PS [3]. In these, a
bivector3 ∈ ∧2(M) on a manifoldM defines a PSiff it has a vanishing Schouten–Nijenhuis
bracket (SNB) with itself, [3,3] = 0. This condition, when generalized to multivectors of
even order3 ∈ ∧2p(M) provides the definition of the GPS (see below for the odd-order
case) because for

3 = 1

(2p)!
ωj1...j2p ∂

j1 ∧ · · · ∧ ∂j2p (10)

† From the condition6 = 0 easily follows that in an-dimensional space the (obviously decomposable)n-tensor
ηi1...in = εi1...in defining theRn volume element and the tensorηi1...in−1(x) = εi1...in xin are Nambu tensors [5], i.e.
satisfy the conditions (6) and (7).
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the requirement [3,3] = 0 means that the coordinates of thegeneralized Poisson(GP)
multivector3 satisfy the condition [9]

ε
j1...j4p−1

i1...i4p−1
ωj1j2...j2p−1k∂

kωj2p...j4p−1 = 0 (11)

which is equivalent to the (4p − 1)-point, ( 4p−1
2p−1)-termsgeneralized Jacobi identity(GJI)

ε
j1...j4p−1

1...4p−1 {fj1, fj2, . . . , fj2p−1, {fj2p , . . . , fj4p−1}} = 0 (12)

where thegeneralized Poisson bracket(GPB) is also defined by (4) but for the3 in (10).
Notice that, as we shall see below, no further conditions are needed to remove the second
derivatives from equation (12), which is already free of them. As a result the 2p-vector is
constrained by the differential condition (11)only.

The even GPS have a clear differential geometrical origin due to their definition in terms
of the SNB by the condition [3,3] = 0. Moreover, in the linear case one can find (an
infinite number of) examples of even GPS defined by the Lie algebra cohomology cocycles
[9]. Indeed, for simple Lie algebras of rankl, there arel antisymmetric tensors provided
by the l (2pi − 1)-cocycles (i = 1, . . . , l) [10] with coordinates�j1...j2pi−2

σ , which define
GP tensors of order (2pi − 2),

ωj1...j2p−2 = �j1...j2p−2
σ xσ (13)

which satisfy (11). These linear GPB may be seen to be the analogues of the even
multibrackets defining higher order Lie algebras [11] and, from this point of view, there
is a one-to-one correspondence between these linear GPB and the higher-order brackets of
associative non-commuting operators. The time evolution, defined as in (2) but for (2p−1)
Hamiltonians, is not a derivation of the GPB as it is in the N–P structure. In contrast with
the N–P tensors, however, the GP 2p-multivectors (10) are not decomposable in general
because they do not need to obey the algebraic condition (7). It is easy to check, on the
other hand, that any decomposable multivector of order 2p, p > 1, defines a GPS. Indeed,
in this case3=X1 ∧ · · · ∧X2p and using standard properties of the SNB [9, equation (4.1)
of second reference] it follows that

[3,3] = [X1 ∧ · · · ∧X2p,X1 ∧ · · · ∧X2p]

=
∑

(−1)t+sX1 ∧ · · · X̂s · · · ∧X2p,∧[Xs,Xt ] ∧X1 ∧ · · · X̂t · · · ∧X2p = 0

(14)

due to the appearance of repeated vector fields.
Much in the same way that on a Poisson manifold it is possible to define a Poisson

cohomology [3], a GPB also defines ageneralized Poisson cohomology[9] through the SNB.
Explicitly, if the 2p-vector3 defines a GPS, the mappingδ3 : ∧q(M) → ∧2p+q−1(M)

defined by

δ3 : α 7→ [3,α] (15)

is nilpotent since [3, [3,α]] = 0 and defines a(2p − 1)-degree cohomology operator.
Equation (14) and the decomposability of all N–P tensors show that there is an overlap

among the above generalizations of the standard PS. This may be shown directly by noticing
first that the GJI (12) is a full antisymmetrization of (1)†. This observation leads to the
following simple lemma.

Lemma 1.A N–P bracket (hence, satisfying the FI (1)) verifies

ε
j1...j2n−1

1...2n−1 {fj1, fj2, . . . , fjn−1, {fjn, . . . , fj2n−1}} = 0. (16)

† This fact was also known to L Takhtajan (private communication).
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Proof. Multiplying both sides of (1) byε and using its antisymmetry, (1) is rewritten as

ε
j1...j2n−1

1...2n−1 {fj1, fj2, . . . , fjn−1, {fjn, . . . , fj2n−1}}
= n(−1)n−1ε

j1...j2n−1

1...2n−1 {fj1, fj2, . . . , fjn−1, {fjn, . . . , fj2n−1}} (17)

hence, forn > 2, we obtain (16), QED (forn = 2 the N–P and the GPS reduce to the
standard PS).

Equation (16), forn = 2p, is the same as (12) and we conclude thatevery N–P bracket
of even order also defines a generalized Poisson bracket[12]. �

Due to the geometrical origin of the GJI condition, the GPS were originally introduced
[9] for even order only: the SNB of ap (q)-multivector A (B) satisfies [A,B] =
(−1)pq [B,A] and thus [3,3] ≡ 0 if 3 is of odd order (we are not including here the
case of the ‘super’ SNB [13]). Nevertheless, we may extend the GPS by adopting the GJI
(16) for arbitrary (even or odd)n as a first step in their definition. In the odd case, the GJI
is unrelated to the condition [3,3] = 0 since it is trivially satisfied. But if we now define
an odd-order GPB satisfying (16) forn odd, we find settingfi = xi , i = 1, . . . ,2n − 1
that the coordinates of the associatedn-vector3 must satisfy the differential condition (cf
(11), (6))

ε
j1...j2n−1
i1...i2n−1

ωj1j2...jn−1k∂
kωjn...j2n−1 = 0. (18)

For n odd a second step now becomes necessary to cancel all second derivatives that appear
in the GJI (16). If we want to keep the GJI for odd-order brackets we have to impose
an additional ‘algebraic condition’ to then vector defining the structure. Explicitly, this
condition (for arbitraryn) is (cf (7))

ε
i1...in−1 j1...jn−1
k1.........k2n−2

(ωi1...in−1ρωj1...jn−1σ + ωi1...in−1σωj1...jn−1ρ) = 0. (19)

For evenn this equation is automatically satisfied; this explains why there is no ‘algebraic
condition’ for even multivectors defining a GPS. In contrast, equation (19) is an additional
condition onω for n odd.

As a consequence of lemma 1, conditions (18) and (19) must be extracted from
conditions (6) and (7). In fact, it is easily deduced that (18) follows (only) from (6)
and that (19) comes (only) from (7).

Summarizing, extending the definition of GPS to odd brackets, the following general
lemma follows.

Lemma 2.The N–P tensors of even or odd order are a subclass of the multivectors defining
the GPS, namely those for which the time evolution is a derivation of the bracket (or, in
other words, the time-evolution operator preserves the Poissonn-bracket structure).

We conclude this section by mentioning that one might think of using Lie algebra
cocycles�i1...i2pσ as the coordinates of a(2p + 1)-vector3 leading to the odd bracket
{fi1, . . . , fi2p , fσ } = 3(dfi1, . . . ,dfi2p , dfσ ) (see [14] for the trilinear case; cf [15]).
However, although the differential condition for both the N–P (equation (6)) and odd GPS
(equation (18)) are trivially satisfied for a constant multivector, this is not in general the case
for the algebraic N–P (equation (7)) and odd GPS (equation (19)) conditions. In contrast,
any cocycle defines an even linear GPS.

2. Homology and cohomology

We now compare the homological complexes underlying both structures (N–P, (a) and GPS,
(b)). First, let us recall the standard homology complex for a Lie algebraG. Then-chains are
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n-vectors of∧n(G) (for instance, left-invariant [LI]n-antisymmetric contravariant tensors
on the associated groupG, i.e. LI elements of∧n(T (G)) ), and the homology operator
∂Cn→ Cn−1 is defined by

∂(x1 ∧ · · · ∧ xn) =
∑

16l<k6n
(−1)l+k+1[xl, xk] ∧ x1 ∧ · · · x̂l · · · x̂k · · · ∧ xn (20)

wherex ∈ G and [ , ] is the Lie bracket inG; ∂[∧n(G)] = 0 for n 6 1. In particular,
∂(x1 ∧ x2) = [x1, x2] and, in this case,∂ may be relabelled∂ ≡ ∂2, ∂2 : ∧n(G) →
∧n−(2−1)(G).

a1) Nambu–Lie homology

Let us consider now aNambu–Lie(N–L) algebra V of orders in the sense of [16]†. This

means that there is an antisymmetrics-bracket [·, s. . ., ·] : V× s· · ·×V → V, [x1, . . . , xs ] ∈ V
which satisfies the FI

[x1, . . . , xs−1, [y1, . . . , ys ]] = [[x1, . . . , xs−1, y1], y2, . . . , ys ]

+[y1, [x1, . . . , xs−1, y2], . . . , ys ] + · · · + [y1, . . . , ys−1, [x1, . . . , xs−1, yn]]

(21)

i.e. such that the map [x1, . . . , xs−1, ·] : V → V is a multiderivation of the N–L bracket.
The N–L homology has been introduced by Takhtajan [16]. LetCn be the n-chains

Cn = V ⊗ n(s−1)+1· · · ⊗ V, C0 = V. It is convenient to denote the arguments in the chainsCn
by

(X1, X2, . . . , Xn, x) = (xi11 , . . . , xi1s−1
, xi21 , . . . , xi

2
s−1
, . . . , xin1 , . . . , xi

n
s−1
, x) (22)

whereX1 = (xi11 , . . . , xi
1
s−1
) ∈ V s−1, etc andx ∈ V. Now we consider the dot products

C1× C1→ C1 andC1× V → V defined by

X · Y :=
n−1∑
i=1

y1⊗ · · · ⊗ [x1, . . . , xn−1, yi ] ⊗ · · · yn−1 (23)

X · x := [x1, . . . , xn−1, x]. (24)

Due to the FI (equation (21)) these products satisfy

X · (Y · Z)− (X · Y ) · Z = Y · (X · Z) X · (Y · z)− (X · Y ) · z = Y · (X · z). (25)

If these products were antisymmetric (25) would be the Jacobi identity and thus, we would
have defined a Lie algebra. Although they are not, we can still define a Lie-type homology
because the operator∂s defined onC1 by ∂s : C1 → C0 = V, ∂s : (x1, . . . , xs) 7→
[x1, . . . , xs ] and onCn by

∂s(X1, . . . , Xn, x) =
∑

16i<j6n
(−1)i+1(X1, . . . , X̂i , . . . , Xi ·Xj, . . . , Xn, x)

+
∑

16i6n
(−1)i+1(X1, . . . , X̂i , . . . , Xp+1, Xi · x) (26)

verifies‡ ∂2
s = 0. On two-chains,∂2

s = 0 gives the ‘fundamental identity’ which replaces
the Jacobi identity for N–L algebras. For instance, fors = 4 we have∂4(x1, x2, x3, x4) =
† The case of the more general Nambu–Leibnizs-algebra (which does not assume the antisymmetry of the bracket
[17]) is discussed in [18]. We thank L Takhtajan for sending this paper to us.
‡ This is the case for the Leibniz algebras [17] where we have a Lie-like homology in which the ‘bracket’ is not
antisymmetric. The Jacobi-like conditions (25) ensure that∂s is nilpotent.
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[x1, x2, x3, x4] and ∂2
4 on C2 gives (cf (21))

∂2(x1, x2, x3, x4, x5, x6, x7) = [[x1, x2, x3, x4], x5, x6, x7] + [x4, [x1, x2, x3, x5], x6, x7]

+[x4, x5, [x1, x2, x3, x6], x7] + [x4, x5, x6, [x1, x2, x3, x7]]

−[x1, x2, x3, [x4, x5, x6, x7]] . (27)

b1) GP–Lie homology

Let us now look at the case of even GPS. To this end, consider ahigher-order Lie algebra
in the sense of [11] (see also [19, 20]), i.e. letG be a vector space endowed with an

antisymmetrics-linear operation (s even) [·, s. . ., ·] : G ⊗ s· · · ⊗ G → G, which verifies the
generalized Jacobi identity

1

s!

1

(s − 1)!

∑
σ∈S2s−1

(−1)π(σ)[[xσ(1), . . . , xσ(s)], xσ(s+1), . . . , xσ(2s−1)] = 0. (28)

In particular, if s is even thes-bracket of associative operators defined by

[xi1, xi2, . . . , xis ] =
∑
σ∈Ss

(−1)π(σ)xiσ(1)xiσ(2) . . . xiσ(s) (29)

satisfies (28) (fors odd, the l.h.s. in (28) is proportional to [x1, . . . , x2s−1] rather than zero
[11]).

The n-chains are now elements of∧n(G) and the homology operator∂s is the linear
mapping∂s : ∧n(G)→ ∧n−(s−1)(G) defined by

∂s(x1 ∧ · · · ∧ xn) = 1

s!(n− s)! ε
i1...in
1 ... n ∂s(xi1 ∧ · · · ∧ xis ) ∧ xis+1 ∧ · · · ∧ xin . (30)

Denoting,∂s(xi1, . . . , xis ) = [xi1, . . . , xis ] ∈ ∧(G) equation (30) may be rewritten

∂s(x1 ∧ · · · ∧ xn) =
∑

16i1<···<is6n
(−1)i1+···+is+s/2

×[xi1, . . . , xis ] ∧ x1 ∧ · · · ∧ x̂i1 ∧ · · · ∧ x̂is ∧ · · · ∧ xn (31)

and the GJI may be also expressed as∂2
s [∧2s−1(G)] = 0. For instance, fors = 4,

∂2
4(xi1 ∧ xi2 ∧ xi3 ∧ xi4 ∧ xi5 ∧ xi7) gives the GJI (equation (28)) which is the sum of
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7!/4!3! = 35 terms

[[xi1, xi2, xi3, xi4], xi5, xi6, xi7] − [[xi1, xi2, xi3, xi5], xi4, xi6, xi7]

+[[xi1, xi2, xi3, xi6], xi4, xi5, xi7] − [[xi1, xi2, xi3, xi7], xi4, xi5, xi6]

+[[xi1, xi2, xi4, xi5], xi3, xi6, xi7] − [[xi1, xi2, xi4, xi6], xi3, xi5, xi7]

+[[xi1, xi2, xi4, xi7], xi3, xi5, xi6] + [[xi1, xi2, xi5, xi6], xi3, xi4, xi7]

−[[xi1, xi2, xi5, xi7], xi3, xi4, xi6] + [[xi1, xi2, xi6, xi7], xi3, xi3, xi7]

−[[xi1, xi3, xi4, xi5], xi2, xi6, xi7] + [[xi1, xi3, xi4, xi6], xi2, xi5, xi7]

−[[xi1, xi3, xi4, xi7], xi2, xi5, xi6] − [[xi1, xi3, xi5, xi6], xi2, xi4, xi7]

+[[xi1, xi3, xi5, xi7], xi2, xi4, xi6] − [[xi1, xi3, xi6, xi7], xi2, xi4, xi5]

+[[xi1, xi4, xi5, xi6], xi2, xi3, xi7] − [[xi1, xi4, xi5, xi7], xi2, xi3, xi6]

+[[xi1, xi4, xi6, xi7], xi2, xi3, xi5] − [[xi1, xi5, xi6, xi7], xi2, xi3, xi4]

+[[xi2, xi3, xi4, xi5], xi1, xi6, xi7] − [[xi2, xi3, xi4, xi6], xi1, xi5, xi7]

+[[xi2, xi3, xi4, xi7], xi1, xi5, xi6] + [[xi2, xi3, xi5, xi6], xi1, xi4, xi7]

−[[xi2, xi3, xi5, xi7], xi1, xi4, xi6] + [[xi2, xi3, xi6, xi7], xi1, xi4, xi5]

−[[xi2, xi4, xi5, xi6], xi1, xi3, xi7] + [[xi2, xi4, xi5, xi7], xi1, xi3, xi6]

−[[xi2, xi4, xi6, xi7], xi1, xi3, xi5] + [[xi2, xi5, xi6, xi7], xi1, xi3, xi4]

+[[xi3, xi4, xi5, xi6], xi1, xi2, xi7] − [[xi3, xi4, xi5, xi7], xi1, xi2, xi6]

+[[xi3, xi4, xi6, xi7], xi1, xi2, xi5] − [[xi3, xi5, xi6, xi7], xi1, xi2, xi4]

+[[xi4, xi5, xi6, xi7], xi1, xi2, xi3] = 0.

(32)

For the even linear GPS constructed from odd Lie algebra cocycles, the above GJI truly
reflect the underlying Lie-algebra structure; this justifies the GP–Lie name given to this case.
These GJI are particular examples of those appearing in the strongly homotopy algebras
[21], which contain ‘controlled’ violations of the above GJI which may be introduced in
our scheme by using a suitable modification of thecomplete BRST operatorassociated to
G [11, theorem 5.2]. These algebraic structures have been found relevant in closed-string
field theory (see [21, 11] and references therein).

a2) Nambu–Lie cohomology

Let us now consider the dual cohomology operations. For the N–L case we definen-
cochainsCn as mappingsα : V ⊗ n(s−1)+1. . . ⊗V → A whereA is an Abelian algebra (real
field, for instance). Then, the cohomology operatorδs : Cn → Cn+1 is defined as the dual
of the homology operator∂s , (Cn, ∂sCn+1) = (δsCn, Cn+1) where( , ) denotes the natural
pairing between chains and cochains. Using this duality it follows immediately that the
operatorδs is defined (cf [7]) by its action on a cochainα ∈ Cp by

(δsα)(X1, . . . , Xp+1, x) =
∑

16i<j6p+1

(−1)i+1α(X1, . . . , X̂i , . . . , Xi ·Xj, . . . Xp+1, x)

+
∑

16i6p+1

(−1)i+1α(X1, . . . , X̂i , . . . , Xp+1, Xi · x) (33)

whereas in the homology caseX = (x1, . . . , xs−1) ∈ V s−1 andx ∈ V. The proof thatδ2
s = 0

is analogous to that for the Lie algebra cohomology coboundary operator if one thinks of
Xi ·Xj in (33) as a commutator, in which case equation (25) looks like a Jacobi identity.
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b2) GP–Lie cohomology

In the case of the linear GPS constructed on the dual of a Lie algebra we may introduce a
cohomology operator dual to the homology one given in equation (31). Acting onn-cochains
αi1...in

(δsα)(x1, . . . , xn+s−1) =
∑

16i1<···<is6n+s−1

(−1)i1+···+is+s/2

×α([xi1, . . . , xis ], x1, . . . , x̂i1, . . . , x̂is , . . . , xn+s−1) (34)

or equivalently, setting [xi1, . . . , xis ] = ωi1...is ρxρ for definiteness,

(δsα)i1...in+s−1 =
1

s!(n− 1)!
ε
j1...jn+s−1
i1...in+s−1

ωj1...js
ραρjs+1...jn+s−1. (35)

The nilpotency ofδs follows from checking that [9]

(δ2
s α)i1...i2s+n−2 =

s

(s!)2(n− 1)!
ε
j1...jsk1...ks+n−2
i1...i2s+n−2

ωj1...js
ρωρk1...ks−1

σασks ...ks+n−2

+ (n− 1)

(s!)2(n− 1)!
ε
j1...jsk1...ks+n−2
i1...i2s+n−2

ωj1...js
ρωk1...ks

σ ασρks+1...ks+n−2 = 0 (36)

where the second term is zero sinces is even and the cochainα is antisymmetric in(ρ, σ )
and the first one is also zero since it encompasses the GJI. Since this cohomology is based
on multi-algebra commutators, it applies tolinear GPS. For a general GPS, however, the
operator (35) is not defined, but the associated 2p-vector 3 still defines a generalized
Poisson cohomology by (15).

3. Concluding (physical) remarks

The n-dimensional phase space of Nambu [1] for the N–P structure associated with the
volume element inRn, determined by ann-vector xi , has a divergenceless velocity field
since, by (2),

∂j ẋj = ∂j {H1, . . . , Hn−1, xj } = ∂j εi1...in−1j

∂H1

∂xi1
· · · ∂Hn−1

∂xin−1

= 0. (37)

This analogue of theLiouville theorem(a main motivation in Nambu’s generalization of
Hamiltonian dynamics) also holds for the linear GPS given by the cocycles (13) since
ωi1...i2m−2 = xσ�i1...i2m−2

σ
· and�i1...i2m−2

σ
· is a constant antisymmetric(2m− 1)-tensor. Thus,

∂j ẋj = ∂j (ωi1...i2m−3j ∂
i1H1 . . . ∂

i2m−3H2m−3)

= ∂j (xσ�i1...i2m−3j
σ
· )∂

i1H1 . . . ∂
i2m−3H2m−3 = �i1...i2m−3j

j
· = 0. (38)

More generally, the conservation equation is clearly satisfied when the GPS onM is defined
by ωi1...i2m−2 = ∂lω̃li1...i2m−2, andω̃ is an odd-order antisymmetric tensor†.

The Poisson theorem states that the PB of two integrals of motion is also an integral of
motion. In N–P mechanics the extension of the Poisson theorem is guaranteed by the FI
[2] that may be rewritten as

d

dt
{g1, . . . , gn} =

n∑
i=1

{g1, . . . ,
dgi
dt
, . . . , gn}. (39)

† The previous case of the linear GPS is included here because one may takeω̃li1...i2m−2 =
1

(2m−2)!
1

n−2m+3ε
jj1...j2m−2
li1...i2m−2

xj xσ�
σ
j1...j2m−2, i, j, l = 1, . . . , n wheren is the dimension ofM. Note that the second

denominator in the last expression cannot vanish because the order of the bracket(2m − 2) never exceeds the
dimensionn of the manifold.
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For the GPS, there is also an analogue of the Poisson theorem, although the condition
required for the constants of the motion (g1, . . . , gk) (k > 2p) is more stringent. Not only
the g’s have to be constants of the motion,{gi,H1, . . . , H2p−1} = 0, i = 1, . . . , k: the set
(gi1, . . . , gi2p−1, H1, . . . , H2p−1) of any (2p − 1) constants of the motion and the(2p − 1)
Hamiltonians has to be in involution, i.e. any subset of 2p elements has to have zero GPB
[9, theorem 6.1]. This is because, in contrast with (1), where thef1, . . . fn−1 may play the
role of Hamiltonians, the GJI in (12) includes GPB which contain Hamiltonians and more
than one constant of the motion.

We would like to conclude with a comment concerning quantization. As pointed out
by Nambu himself [1], the antisymmetry property is necessary to have Hamiltonians that
are constants of the motion in Nambu’s mechanics. This also applies to the higher-order
N–P structures [2], and remains true as well of the GPS in [9]. The structure of the FI
makes the N–P bracket in [2] specially suitable for the differential equation describing the
time evolution of a dynamical quantity. Nevertheless, the standard quantization of Nambu
mechanics is an open problem likely without solution (see [15] in this respect). There is a
simple argument against an elementary quantization of N–P mechanics in which one tries
to keep the standard one-to-one correspondence among certain dynamical quantities, their
associated quantum operators and the infinitesimal generators of the invariance groups.
It is physically natural to assume that these quantum operators,xi say, are associative.
But if so, it is not difficult to check [11] that any commutator [x1, . . . , xs ] defined by the
antisymmetrized sum of their products, as in (29), does not satisfy the FI. For odds-brackets,
moreover, we find [11, lemma 2.1] that it is not possible to realize the GJI in terms of odd
multibrackets, since then the r.h.s. of equation (28) is replaced by [x1, . . . , x2s−1]. Thus,
for the odd case (which includes Nambu’s) a multibracket of associative operators defined
as in (29) leads to an identity which isoutside the original N–P algebraic structure. For
s even, however, equation (28) holds. The resulting identity, however, is not the FI, but
the GJI associated with the GPS introduced in [9]. Thus, a natural correspondence between
multibrackets and higher-order PB exists only for the even multibrackets and the GPS. The
associativity of the quantum operators is not compatible with the derivation property of
the N–P bracket which leads to the FI (1). Such a compatibility exists for the even GPS;
however, in this case the time evolution fails to be a derivation of the GPB making it more
difficult to establish a dynamics already at the classical level.

The above discussion indicates that, in Nambu’s words, ‘quantum theory is pretty unique
although its classical analog may not be’. The quantization of higher-order Poisson brackets
requires renouncing to some of the standard steps towards quantum mechanics†. But it may
well be (see also [24]) that classicalmechanicsis pretty unique too if the term ‘dynamical
system’ is restricted to its physical (rather than mathematical) meaning.

The authors wish to thank L Takhtajan for his comments on the manuscript. This research
has been partially supported by the CICYT and the DGICYT, Spain (1997, PR 95-439). JMI
thanks the EU (HCM programme) for financial support. JA and JCPB wish to acknowledge
the kind hospitality extended to them at DAMTP and JCPB wishes to thank the Spanish
Ministry of Education and Culture and the CSIC for an FPI grant.

† A formal quantization of then=3 Nambu mechanics case, where the Nambu bracket itself is replaced by an
h̄-deformed one, has been performed in [22]. For the ‘quantization deformation’ and∗ products, see the references
quoted in [22] and also [23].
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